

Kill Bill or Tax: An Analysis of Alternative CO2 Price Floor Options for EU Member States

Christoph Böhringer (*University of Oldenburg*)

Carolyn Fischer
(Vrije Universiteit Amsterdam;
University of Ottawa;
Resources for the Future)

History of CO₂ prices in EU ETS

- When the EU ETS was launched in 2005, the EU Commission was projecting allowance prices in the range of €30/ton CO₂
- Prices soon collapsed and remained stubbornly low

- Member States began to worry these prices were insufficient to meet long-term climate policy goals
- Various Member States are calling for CO₂ price floors
 - UK carbon price support, Dutch carbon tax, French and German proposals...

UK Carbon Price Support

• United Kingdom introduced domestic carbon floor for electricity generators in 2013; currently capped £18/ton (around €20/ton) through 2020.

• Why do this, given that the cap is unaffected (waterbed effect)?

Three (unilateral) policy options

1. Domestic floor price (TAX)

 Carbon tax on domestic covered sources equal to difference between domestic minimum price and ETS price (UK and NL strategy)

2. Unilateral auction reserve price (*KILL*)

- Cancel own allowances for auction to achieve an <u>EU-wide minimum</u>
 <u>ETS price</u> (equal to domestic minimum price)
- Equivalently, take auction revenues and buy and invalidate allowances

3. Domestic over-compliance requirement (*BILL*)

- Domestic covered sources must surrender ratio of permits to emissions equal to domestic minimum price / ETS price (or 1, whichever is larger)
- Equivalently, set a carbon tax and use the revenues to buy and invalidate allowances

Stylized analytical model

Approach

- Analytically and then numerically
- Compare effects of equivalent domestic price floors
- Derive optimal domestic price floors for each type

Implications of price floor options

	ETS price	Fiscal benefits	Environmental benefits	Terms of trade
TAX	(\psi)Waterbed effect drives down price	(++) Large and positive: transfers home emission rents	(0/?) No change overall; shifts emissions abroad	(+/?) Benefits allowance importers
KILL	(\(\frac{1}{1}\)) 1-1 price increase	(-/?) Allocation more valuable but must forego revenues to kill	(++) maximum reductions abroad for the price	(-/?) hurts importers but could benefit large exporters
BILL	(†) from rise in allowance demand	(+) Auctioned allowances more valuable	(+) additional reductions abroad	(–/?) hurts importers

Quantitative impact assessment

- PE model based on MAC curves for EU-ETS
 - Generated from CGE model (GTAP 10;
 2014 base year)
- Reference scenario calibrated to 2018:
 - verified emission allowances
 - CO₂ price of 15 €/tCO₂

Source: European Energy Exchange and ICE Futures Europe (2019)

Forerunner coalitions:Germany

(+ UK + France + Netherlands + Austria + Sweden)

Simulations

Unilateral actors minimize total costs

```
Compliance costs ("central case")
```

- Direct abatement costs + net allowance imports
- (net of) Fiscal benefits (sensitivity to γ)
- Damages (sensitivity to δ)
- Costs as a function of domestic minimum price (Germany)
- Optimal unilateral policies and prices (individual forerunners)
- Nash and cooperative equilibrium (all fore-runners)

Reference scenario (% of EU ETS emissions, 2018)

Emission price and abatement

(unilateral action by Germany)

ETS price

Emission abatement

Compliance costs versus revenues

Abatement costs (*TAC*) and trade costs (*XC*)

Net revenues

Fiscal benefits: MCPF in the EU

Source: Barrios et al 2013 for the EC

Other fiscal benefits

 Many countries earmark revenues from emission pricing toward investments in clean technology and other climate-related programs

Incremental costs (IC) and incremental <u>fiscal benefits</u> (IB)

TAX: Incremental costs (IC) and incremental fiscal benefits (IB) by unilateral actor

·····IB (y=0.25)

– IB (γ=1)

IB (y=0.5)

Social Cost of Carbon

US social cost of carbon

Current US social cost of carbon estimates, for each year to 2050 in \$ per tonne of CO2. The US defines four values for the SCC. These are a high-impact figure (95th percentile value for a 3% discount rate, dark blue line) and average values for three discount rates of 2.5% (light blue), 3% (red) and 5% (grey). Source: Interagency Working Group 2016 update. Chart by Carbon Brief using Highcharts.

Incremental costs (IC) and incremental environmental benefits (IB)

KILL

Total and Coalition Additional Costs by Additional Abatement (no fiscal benefits)

Emissions prices (€/tCO2) for a given level of additional abatement

KILL: Incremental costs (IC) and incremental environmental benefits (IB) by country

Choice of unilateral policy and price floor

SCC (€/tCO ₂)	MCPF	Germany		UK		France		Netherlands		Sweden / Austria	
0	1	None	15	None	15	None	15	None	15	None	15
0	1.25	TAX	34	TAX	38	TAX	80	TAX	51	TAX	100
0	1.5	TAX	52	TAX	55	TAX	100	TAX	78	TAX	100
0	2	TAX	75	TAX	76	TAX	100	TAX	100	TAX	100
25	1	BILL	25	KILL/BILL	20/29	BILL	27	KILL	20	KILL	20
25	1.25	TAX	34	BILL	29	TAX	80	BILL	36	TAX	100
25	1.5	TAX	52	TAX	55	TAX	100	TAX	78	TAX	100
25	2	TAX	75	TAX	76	TAX	100	TAX	100	TAX	100
50	1	BILL	54	KILL	32	KILL	31	KILL	31	KILL	31
50	1.25	BILL	61	BILL	70	BILL	74	BILL	86	BILL	100
50	1.5	BILL	68	BILL	73	BILL	80	BILL	89	BILL	100
50	2	BILL	80	BILL	79	TAX	92	BILL	94	BILL	100

Conclusions

- Without fiscal benefits and climate damages, *TAX* leads to substantial excess cost, *KILL* is by definition cost-effective, while *BILL* induces relatively small efficiency losses
- Fiscal benefits in particular promote *TAX*, but *BILL* also provides some benefits (*KILL* remains unattractive)
- Climate damages do not make TAX attractive for a single EU
 MS, but KILL and BILL become attractive
- Terms of trade effects are small initially, but may loom larger with more ambition
- Extensions:
 - Benefits from emission relocation
 - Induced innovation (spillovers)
 - Interaction with market stability reserve